#Lutece3328. Multiple

Multiple

Description

Let fif_i denote the ii-th element in the Fibonacci sequence, i.e. f1=f2=1,fn=fn1+fn2 (n3)f_1=f_2=1,f_n=f_{n-1}+f_{n-2}\ (n\ge 3). xyx\mid y denotes xx divides yy, i.e. xx is a divisor of yy. For example, 36,113\mid 6, 1 \mid 1 and 624 6 \mid 24.

Then, let S={ssN+,fnfs}S=\{s\mid s\in \mathbb{N}_+, f_n\mid f_s\}. Given two integers nn and kk, you need to find the kk-th smallest element in the set SS.

N+\mathbb{N}_{+} denotes all positive integers, i.e. N+={1,2,3,}\mathbb{N}_{+} = \{1,2,3,\ldots \}.

Input

The first and only line of the input contains two integers n,kn,k (1n,k109)(1\le n,k \le 10^9).

Output

Output an integer, indicating the kk-th smallest element in set SS.

Samples

3 6
18

Note

Since f3=2f_3=2, fsf_s can be 2,8,34,144,610,2584,2, 8, 34, 144, 610, 2584, \ldots, and S={3,6,9,12,15,18,}S=\lbrace3,6,9,12,15,18,\ldots\rbrace, the sixth smallest element is 1818.

Resources

电子科技大学第十四届 ACM 趣味程序设计竞赛